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Abstract
A novel analytical method is derived for the ultimate capacity interaction diagram

(i.e., axial compression, N - bending moment resistance, M) of reinforced concrete

(RC) columns with circular cross section. To this aim, the longitudinal rebar

arrangement is replaced with a thin steel ring equivalent to the total steel area;

moreover, according to modern design approaches, simplified stress–strain rela-

tionships for concrete and reinforcing steel are used. Illustrative applications dem-

onstrate that the ultimate capacity computed by the proposed analytical approach

agrees well with the results obtained by rigorous methods based on consolidated

numerical algorithms. The new solution allows for a rapid, accurate assessment of

circular cross section capacity by means of hand calculations; this is especially use-

ful at the conceptual design stage of various structural and geotechnical systems.

The method can be easily extended to more general configurations, such as multi-

ple steel rings and composite concrete-steel sections.
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1 | INTRODUCTION

Reinforced concrete (RC) structural members with circular
cross section are widely used in structural and geotechnical
engineering applications. Typical examples include columns
in moment-resisting frames, foundation piles, and contigu-
ous pile walls. The widespread use of circular cross sections
in structural members is mainly due to their simplicity of
construction as well as to their identical stiffness and
strength features in all horizontal directions. However, while

the design of rectangular RC cross sections may be easily
performed (even by hand calculations, under some simplify-
ing assumptions), the analysis is more complex in the case
of circular cross sections. In absence of analytical solutions,
the assessment of axial compression-bending moment resis-
tance (M-N) interaction domains is performed numerically.

Research on the topic includes integration methods for
both rectangular and circular RC cross sections based on
analytical and numerical algorithms (e.g., References
3,4,7,9). For instance, Bonet et al.3 presented a comparative
study of different integration methods (both analytical and
numerical) of stresses in circular and rectangular RC cross
sections subjected to axial loads and biaxial bending. The
constitutive equation used for concrete is a parabola-
rectangle from Eurocode 2.5 The comparison is performed in
terms of accuracy and computational speed of each investi-
gated method. Similarly, Davalath7 developed a numerical

[Correction added on 18 October 2019 after first online publication:
Equation (4) has been corrected.]
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procedure along with a computer code for the analysis of
RC circular cross sections subjected to axial loads (compres-
sion or tension) and bending moments. Barros et al.2 derived
a closed-form solution for the optimal design of RC cross
sections, but only for the rectangular shape. This method is
valid for ultimate axial and (uniaxial) bending loading; it
relies on the use of a parabola-rectangle diagram for the con-
crete in compression. Furthermore, Tumo et al.13 presented
an analytical approach for quantifying the contribution of
transverse reinforcement to the shear resistance of RC struc-
tural members of solid and hollow circular cross section.
Recently, Trentadue et al.12 proposed closed-form approxi-
mations of the M-N interaction domains for RC columns and
concrete-filled steel tubes with circular cross section. A sin-
gle analytical expression is provided for both cases; how-
ever, one parameter (which is function of the mechanical
ratio of the reinforcing steel) of the proposed approach has
still to be calibrated by means of a numerical optimization
procedure.

This note introduces a fully analytical, code-compatible
procedure for the ultimate analysis of RC circular cross sec-
tions subjected to axial compression and bending. The study
constitutes an improvement over the method proposed in
Cosenza et al.6 As in the previous study, the equations are
developed by assuming the reinforcement steel area as
lumped into an equivalent steel ring completely yielded,
whereas the stress-block diagram is assumed for concrete. In
addition, design yield stress of steel is properly modified to
obtain more accurate results. Moreover, an analytical
approximation is introduced to derive an analytical solution
for the computation of M-N domains without iterations
and/or numerical computation.

The rest of this paper is organized as follows. A review
of code-based assumptions and procedures for the assess-
ment of the ultimate flexural capacity of RC cross section is
presented first. The proposed analytical method is then
described, introducing a simplified approach for the deriva-
tion of M-N domains. This is followed by a validation exer-
cise for the proposed method through a series of illustrative
examples.

2 | CODE-BASED ASSESSMENT OF
ULTIMATE FLEXURAL CAPACITY
FOR RC CROSS SECTIONS

Eurocode 2 (or EC25; Sec. 6.1) provides principles and rules
for the assessment of the ultimate flexural capacity of RC
members, with or without axial force. To this end, the fol-
lowing simplifying assumptions are made:

1. Plane cross sections remain plane upon deformation, up
to failure;

2. Strain in bonded reinforcement (whether in tension or in
compression), is identical to that in the surrounding con-
crete (i.e., perfect bonding exists between steel and
concrete);

3. The tensile strength of the concrete is neglected;
4. Compressive stresses in concrete are derived according

to pertinent idealized design stress/strain relationships
(EC2, Sec. 3.1.7);

5. Stresses in reinforcing bars are derived from cor-
responding design curves (EC2, Sec. 3.2.7);

6. Design strengths for concrete and steel are defined as
fcd = αcc fck /γc, fyd = fyk /γs, respectively (EC2, Secs.
3.1.6, 3.2.7), where αcc is a coefficient taking into
account of long term effects on compressive strength
and of unfavorable effect resulting from the way the load
is applied,1 fck is the specified (i.e., characteristic, 5%)
compressive strength of concrete (cylinder strength) and
fyk is the specified yield stress of steel, γc and γs are
material safety factor according to Eurocode-like Load
and Resistance Factor Design (LFRD);

7. Material safety factors are γc = 1.5 for concrete and
γs = 1.15 for steel (EC2, Sec. 2.4.2.4).

It is worth noting that all the above assumptions also hold
in the case of ACI 318–14.1 The main difference is that the
Eurocode-based approach to LFRD consists of reducing the
material strength values using their conservative percentiles
(i.e., characteristic values divided by material safety factors)
as design values rather than applying safety factors directly
to the sectional strength (as in the ACI 318–14 – see
Iervolino and Galasso11 for an extensive discussion on the
topic). On the other hand, the specified compressive strength
of concrete and the specified yield strength for non-
prestressed reinforcement in ACI 318–14 are directly used to
compute the nominal flexural strength of a cross section and
this is further reduced by a strength reduction factor in ACI
318–14 (Chapter 21), ranging from 0.65 to 0.9 for moment,
axial force, or combined moment and axial force.

According to points 4 and 5, a rigorous assessment of the
ultimate flexural capacity may be performed assuming a
parabolic-rectangular relationship between the stress and
corresponding strain in the concrete in compression, whereas
the steel may be idealized as an elastoplastic-material
(Figure 1a). Such an analysis requires the use of integration
procedures and is thereby performed via computer codes
such as the Biaxial software,8 among others. As a simpler
alternative for the analysis and design of circular cross sec-
tions at the Ultimate Limit State (ULS), simplified stress–
strain relationships may be utilized. For instance, similarly
to ACI 318–14, the stress distribution in the concrete may be
assumed as a rectangular stress block extended up to a
depth, y, smaller than of the actual neutral axis depth, x, and
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a magnitude, f’cd, equal to some fraction of the concrete
compressive design strength (generally, y = 0.8x and
f’cd = fcd are assumed). This procedure means, in terms of
constitutive models of the materials, that concrete behaves
as a perfectly plastic material after reaching a specific thresh-
old value of compressive strain; whereas, below such a
strain value, it offers no resistance (Figure 1b). In the frame-
work of simplified methods, an elastic–plastic stress–strain
diagram for reinforcing steel, with a horizontal top branch
without a strain limit, is recommended. This latter assump-
tion is well justified by experimental results (e.g., see Refer-
ence 10). Based on this assumption, the failure of the
section always occurs due to concrete crushing, that is, when
the maximum concrete strain is equal to an ultimate strain
value εcu (maximum concrete compressive strain) or to a
second value εc2 when the section is all under compression.
These deformation characteristics for concrete depend on
material strength; see for example Table 3.1 in EC2.

Owing to these simplified assumptions, the computation
of the flexural capacity is quite straightforward by solving
the equilibrium equations; yet, some iterations are necessary
to calculate the position of the neutral axis. A step-by-step
presentation of the procedure is provided in Cosenza et al.6

3 | PROPOSED METHOD

A rigorous analysis of circular cross sections should be
performed considering the actual location of the reinforce-
ment longitudinal bars. Such a condition does not allow for
a simple analytical expression for the ultimate bending
moment capacity. An approximate formulation is possible

by means of some straightforward idealizations; specifically
(Figure 1c):

1. The actual longitudinal rebar arrangement is replaced by
a thin steel ring with equivalent total area As;

2. The actual distribution of concrete stress is replaced by
a rectangular diagram with an “effective strength”
f’cd = 0.9 fcd. This assumption concerns a specific EC2
provision for circular cross section: if the width of the
compression zone decreases in the direction of the
extreme compression fiber the value of the effective
strength should be reduced by 10%.

3. The steel is considered to be at a yielding state, both in
compression and tension, contributing an “effective
stress” f’yd = 0.95 fyd. The factor 0.95 has been cali-
brated by the authors to minimize the discrepancies
between the results from the proposed approach and
those obtained through more rigorous approaches, as dis-
cussed later in the paper.

It is worth noting that these assumptions are equivalent to
assuming a perfectly plastic behavior for both steel and con-
crete, where the threshold strain value (a) separating compres-
sion and tension for steel and (b) below which concrete offers
no strength has a given, positive value. Hence, for the assess-
ment of the ultimate flexural capacity, regardless of the actual
strain profile, materials may be assumed to behave as rigid-
plastic, and the resulting (fictitious) neutral axis depth will
coincide with the extension of the compressive zone.

Owing to these hypotheses, the condition of equilibrium
between all the internal and external forces applied to the
cross section may be written as:

FIGURE 1 Assumptions on the constitutive behavior of materials and mobilized strength in the different analysis methods: (a) EC2-based
approach with parabola-rectangle diagram for concrete under compression and bilinear stress-strain relation for steel; (b) EC2-based approach with
rectangular stress distribution for concrete under compression and bilinear stress-strain relation for steel; (c) proposed approach
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R2

2
2θ− sin2θð Þf 0cd +

θ

π

� �
Asf 0yd−

π−θ

π

� �
Asf 0yd =NEd, ð1Þ

where NEd is the applied axial force and θ is the angle defin-
ing the extension of compression zone (Figure 2), ideally
varying from 0 (no compression) to π (the section is entirely
compressed). In Equation (1), (θ/π) Αs and (1−θ/π) As are
the cross sectional areas of longitudinal reinforcement in
compression and tension, respectively.

Multiplying each term in Equation (1) by 2
R2f 0cd

, Equation

(1) may be reformulated as:

2θ− sin2θð Þ+2ω0θ−2ω0 π−θð Þ=2πν0, ð2Þ

where ω0 = As
πR2

f 0yd
f 0cd

and ν0 = NEd
πR2

1
f 0cd

are the mechanical steel ratio

and the design axial force normalized to the total cross sec-
tional concrete area of the member respectively (the prime
symbol “0” indicates that quantities are normalized by effective
values of design strength – see point 2 and 3 above).

Owing to the transcendental nature of Equation (2), the
exact value of the angle θ may be found only iteratively
(e.g., using the Newton's method). Nevertheless, an approxi-
mate explicit solution for θ is possible by substituting the
term sin2θ in Equation (2) with the parabola 16 θ (π/2−θ)/π2

(for θ ≤ π/2). Consequently, Equation (2) reduces to the
second-order algebraic equation:

16
π2

θ2 + 2 1+ 2ω0−
4
π

� �
θ−2π ω0 + ν0ð Þ=0, ð3Þ

which admits the positive solution:

θ=
π

4
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s2

4
3
5:
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A comparison between the exact values of θ obtained
from Equation (2) (exact relationship among θ, ν0, and ω0

may be found by fixing the values of θ and ν0, and calculat-
ing ω0, or fixing θ and ω0 and calculating ν0) and the corre-
spondent estimates by means of Equation (4) is offered in
Figure 3, as a function of dimensionless axial force ν0 and
reinforcement ratio ω0. Clearly, approximate estimates and
exact values are almost coincident. Note that the simplified
expression for θ is valid for ν0 ≤ 0.5, that is, θ < π/2. Never-
theless, as the function θ (ν0) presents a symmetry point
around (0.5, π/2), for ν0 > 0.5 the value of θ may be easily
derived by symmetry considerations.

FIGURE 2 Stress distribution and
formulae for the proposed method

FIGURE 3 Comparison between exact and approximate values of θ, as function of dimensionless axial force ν0 (left) and mechanical
reinforcement ratio ω0 (right)
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Once evaluated θ, the design flexural capacity MRd is
equal to the sum of the design flexural resistance due to con-
crete, MRd,c, and the design flexural resistance due to steel,
MRd,s. By employing the quantities in Figure 2, it is straight-
forward to show that2:

MRd =MRd,c +MRd,s =
2
3
R3 sin3θ f 0cd +

2
π

R−cð ÞAs sinθ f 0yd,

ð5Þ
where c is the concrete cover of cross section; multiplying
each term by 1

2πR3f 0cd
, Equation (5) may be rewritten as:

μRd =
1
3
1
π
sin3θ+

ω0

π
1−

c
R

� �
sinθ, ð6Þ

where μRd =
MRd

2πR3f 0cd
is the dimensionless bending capacity of

the cross section. In this way, the ultimate flexural capacity
is expressed in a general form as a function of the relevant
dimensionless parameters ω0, ν0, and c/R.

4 | M-N INTERACTION DOMAINS

The proposed method also allows for a simple computation
of the interaction domains in an analytical way, by simply
varying the axial force and, thereby, retrieving the value of
the corresponding ultimate moment capacity by means of
Equation (5) or (6). In addition, the simplified assumptions

adopted here offer insight in the section layout at failure for
some peculiar situations corresponding to specific points on
the domain. A sketch of a typical M-N (or, in dimensionless
form, μ

0
− ν

0
) domain is reported in Figure 4. Five (5) key

points can be identified.

• Point A. This corresponds to the extreme traction load the
section can carry. In this situation, no bending is allowed
and the whole tensile force is carried by the steel, due to
the inherent assumption of no tensile strength offered by
the concrete. The axial load is thereby equal to the area of
the steel As multiplied by its design strengthf 0yd. In dimen-

sionless terms, it is immediate to derive that ν 0 =−ω 0.
• Point B. This is the point symmetric to point A and corre-

sponds to pure compression. Both concrete and steel
mobilize their strength in any point of the section. The
corresponding axial force is given by the sum of the steel
capacity f 0ydAs and the concrete capacity f 0cdπR

2. In

dimensionless terms, ν 0 = 1+ω0.
• Point C. This point is representative of pure bending. In

such conditions, total compression force associated to both
concrete and steel must equal the tensile steel force. This
means that the depth of compression zone yc is less than R.
It is straightforward to derive that yc is an increasing func-
tion of the amount of reinforcement ω and tends to R when
reinforcement increases up to infinity, as in the latter case
concrete would give a negligible contribution compared to
steel. A simplified expression for the moment capacity
under pure bending is presented in Cosenza et al.6

FIGURE 4 N - M and ν0 - μ0 domain through the proposed method
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• Point E. This point corresponds to a failure condition with
the same ultimate moment as in Point C and an associated
compressive force. This means that the increase in axial
force due to concrete and steel must not produce any

bending moment and, therefore, the depth of compression
zone is equal to (2R - yc). The same result may be
obtained by considering that Point E is the one symmetri-
cal to Point C. The axial force is equal to the ultimate

TABLE 1 Comparison of results
obtained by the proposed method (MRd4)
and other formulations from the literature,
including the most rigorous numerical
solution using Biaxial (MRd1)

ν ρ MRd1 MRd2 MRd3 MRd4
MRd2−MRd1

MRd1

MRd3−MRd1
MRd1

MRd4−MRd1
MRd1

(−) (%) (kNm) (kNm) (kNm) (kNm) (%) (%) (%)

0 1 143.7 141.4 143.6 137.1 −1.60 −0.07 −4.59

2 258.4 256.2 264.8 253.1 −0.85 2.48 −2.05

3 365.7 361.2 377.9 361.2 −1.23 3.34 −1.23

4 467.5 462.2 486.8 465.1 −1.13 4.13 −0.51

0.1 1 175.9 170.4 176.9 174.3 −3.13 0.57 −0.91

2 283.6 277.3 290.2 281.6 −2.22 2.33 −0.71

3 385.4 378.7 398.4 384.3 −1.74 3.37 −0.29

4 483.9 475.7 504.0 484.6 −1.69 4.15 0.14

0.2 1 204.3 196.4 202.4 201.8 −3.87 −0.93 −1.22

2 303.4 294.2 309.5 302.6 −3.03 2.01 −0.26

3 399.2 390.0 414.0 401.4 −2.30 3.71 0.55

4 494.6 484.7 517.1 499.0 −2.00 4.55 0.89

0.3 1 220.7 209.5 220.0 220.3 −5.07 −0.32 −0.18

2 315.3 304.3 323.0 317.0 −3.49 2.44 0.54

3 407.6 396.7 424.9 413.2 −2.67 4.24 1.37

4 500.5 489.6 526.3 509.0 −2.18 5.15 1.70

0.4 1 228.0 217.8 229.9 227.3 −4.47 0.83 −0.31

2 317.9 307.4 330.7 322.5 −3.30 4.03 1.45

3 409.3 398.6 431.3 417.8 −2.61 5.38 2.08

4 500.5 489.7 531.8 512.9 −2.16 6.25 2.48

0.5 1 224.7 215.2 233.0 227.3 −4.23 3.69 1.16

2 314.4 304.6 333.2 322.6 −3.12 5.98 2.61

3 404.4 394.5 433.3 417.8 −2.45 7.15 3.31

4 494.6 484.6 533.5 512.9 −2.02 7.86 3.70

FIGURE 5 Comparison between results from the proposed method and the rigorous analysis
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compressive load of an unreinforced section (ν0 = 1). The
presence of the steel is, therefore, responsible for the
finite moment capacity under normal load.

• Point D. This point is associated with the maximum bend-
ing capacity of the section, occurring under a dimensionless
axial force ν0 = 0.5. It is evident that the stress-block dia-
gram is extended up to a half cross section, since any
increase or decrease of the compression zone would lead to
a decrease in the bending moment capacity.

5 | VALIDATION OF THE
PROPOSED METHOD

Figure 5 reports a comparison between the results obtained
through the proposed approach and a rigorous solution in
the realm of the aforementioned assumptions 1–7. EC2 is
used as the reference code in this illustrative application;
however, similar findings can be obtained by using the ACI
318–14 design framework. Results, expressed through
dimensionless pairs ν0: μ0, refer to a circular cross
section having a diameter of 50 cm and a concrete cover of
5 cm. Reinforcement is represented by 10, 20, 30, and
40 bars with a diameter ϕ = 16 mm, corresponding to rein-
forcement ratios ρ approximately equal to 1, 2, 3, and 4%
(consistent with detailing rules for local ductility of RC col-
umns in seismic areas). Concrete and steel have design
strengths fcd = 14.2 MPa (εcu = 0.35%) and fyd = 391 MPa,
respectively (corresponding to fck = 25 MPa and fyk =
450 MPa, the latter being the recommended value in Italy).
It is noted, by inspecting Figure 5, that the proposed method
matches very closely the rigorous results obtained by means
of freeware Biaxial (available from the website of the Italian
Network of Earthquake Engineering University Labs, or
ReLUIS: http://www.reluis.it/index_eng.html). The discrep-
ancies from the rigorous analysis are of the order of 1% for
ν0 values relevant to earthquake engineering applications
(e.g., ν < 0.55, ν0 < 0.61), whereas the method underesti-
mates by 5–10% the extreme values corresponding to a
purely axial force. This is due to the simplifying assumption
of reducing design strengths employed in the proposed
method. Numerical values, corresponding to ν0 ratios ranging
from 0 to 0.5, are also reported in Table 1 together with other
formulations. In the table, Mrd1 is the most rigorous ultimate
flexural capacity of the cross section computed by the Biaxial
software; Mrd2 represents the same value but computed using
the simplified stress-block diagram for concrete under com-
pression and assuming the effective strength of concrete
reduced by 10% according to EC2. (To this aim, an ad hoc
MATHWORKS-MATLAB® script was developed by the
authors). Finally, Mrd3 is evaluated according to Cosenza
et al.6, whereas Mrd4 is the ultimate flexural capacity value of
the cross section computed using the proposed method. The

mean absolute error of the proposed approach is 1.43%, on
the conservative side, offering better performance in
predicting the flexural capacity over that provided by both the
stress-block analysis (2.61%) and the Cosenza et al.6 method
(3.54%). Note that the error provided by the proposed method
is lower than the one by the Trentadue et al.12 approach,
which report an average discrepancy of 3.2% versus numeri-
cal solutions. Further validation of the proposed approach
could also be performed by using results from experimental
tests available in the literature. However, this is outside the
scope of this note. In fact, it can be quite challenging to gather
reliable (especially in terms of sample size, to allow statisti-
cally meaningful comparisons) and open (providing the
required input data to implement the proposed numerical solu-
tion) datasets of experimental tests for RC members with cir-
cular cross sections.

6 | CONCLUSIONS

The choice of a circular cross section for structural members
is popular in both geotechnical and structural design, due to
simplicity of construction and equal strength under horizon-
tal loading in all directions. In comparison with rectangular
cross sections, no analytical solutions are available to evalu-
ate flexural capacity under a specified axial load. This paper
aimed at providing a simple, approximate analytical solution
in the M-N space which could facilitate routine calculations.
Comparison with rigorous numerical analyses indicates an
excellent performance of the proposed approach (maximum
discrepancies of less than 5%, typically less than 1%); the
proposed approach outperforms existing simplified formula-
tions, the latter being more complicated and involving itera-
tive, or even numerical procedures.

ENDNOTES

1 According to EC2, the value of αcc for use in a Country should lie
between 0.8 and 1 and the recommended values is 1.

2 Note that due to a clerical error, in the original work by Cosenza et al.6

the equation is reported with a wrong coefficient of 4/3 instead of 2/3.

ORCID

Carmine Galasso https://orcid.org/0000-0001-5445-4911

REFERENCES

1. American Concrete Institute (ACI) Committee 318, ACI 318–
2014: Building code requirements for structural concrete and com-
mentary; 2014.

2. Barros MHFM, Barros AFM, Ferreira CA. Closed form solution
of optimal design of rectangular reinforced concrete sections. Eng
Comput. 2004;21(7):761–776.

54 DI LAORA ET AL.

http://www.reluis.it/index_eng.html
https://orcid.org/0000-0001-5445-4911
https://orcid.org/0000-0001-5445-4911


3. Bonet JL, Barros MHFM, Romero ML. Comparative study of ana-
lytical and numerical algorithms for designing reinforced concrete
section under biaxial bending. Comput Struct. 2006;8:31–32.

4. Brøndum Nielsen T. Ultimate flexure capacity of circular and annu-
lar cracked concrete sections. ACI Struct J. 1988;85(4):437–441.

5. CEN, European Committee for Standardisation. Eurocode 2:
Design of concrete structures. Part 1–1: General rules and rules for
buildings; 2004

6. Cosenza E, Galasso C, Maddaloni G. A simplified method for
flexural capacity assessment of circular RC cross sections. Eng
Struct. 2011;33(3):942–946.

7. Davalath GSR, Madugula MKS. Analysis/design of reinforced con-
crete circular cross-sections. ACI Struct J. 1988;85(6):617–623.

8. Di Ludovico M, Lignola GP, Prota A, Cosenza E. Nonlinear anal-
ysis of cross-sections under axial load and biaxial bending. ACI
Struct J. 2010;107(4):390–399.

9. Elevard NJ. Axial load-moment interaction for cross-sections hav-
ing longitudinal reinforcement arranged in a circle. ACI Struct J.
1997;94(6):695–699.

10. Galasso C, Maddaloni G, Cosenza E. Uncertainty analysis of flex-
ural overstrength for new designed RC beams. ASCE J Struct Eng.
2014;140(7):04014037.

11. Iervolino I, Galasso C. Comparative assessment of load-resistance
factor design for FRP-reinforced cross sections. Constr Build
Mater. 2012;34:151–161.

12. Trentadue F, Quaranta G, Marano GC. Closed-form approxima-
tions of interaction diagrams for assessment and design of
reinforced concrete columns and concrete-filled steel tubes with
circular cross-section. Eng Struct. 2016;127:594–601.

13. Turmo J, Ramos G, Aparicio AC. Shear truss analogy for concrete
members of solid and hollow circular cross-section. Eng Struct.
2009;31(2):455–465.

AUTHOR BIOGRAPHIES

Raffaele Di Laora, Assistant Profes-
sor
Dipartimento di Ingegneria
Università degli Studi della Campa-
nia “Luigi Vanvitelli”
Aversa (CE), Italy
raffaele.dilaora@unicampania.it

Carmine Galasso, Associate Profes-
sor
Department of Civil, Environmen-
tal & Geomatic Engineering
University College London
London, UK
c.galasso@ucl.ac.uk

George Mylonakis, Professor
Department of Civil Engineering
University of Bristol
Bristol, UK
g.mylonakis@bristol.ac.uk

Edoardo Cosenza, Professor
Dipartimento di Strutture per
l'Ingegneria e l'Architettura
Università degli Studi di Napoli
“Federico II”
Naples, Italy
cosenza@unina.it

How to cite this article: Di Laora R, Galasso C,
Mylonakis G, Cosenza E. A simple method for N-M
interaction diagrams of circular reinforced concrete
cross sections. Structural Concrete. 2020;21:48–55.
https://doi.org/10.1002/suco.201900139

DI LAORA ET AL. 55

mailto:raffaele.dilaora@unicampania.it
mailto:c.galasso@ucl.ac.uk
mailto:g.mylonakis@bristol.ac.uk
mailto:cosenza@unina.it
https://doi.org/10.1002/suco.201900139

	A simple method for N-M interaction diagrams of circular reinforced concrete cross sections
	1  INTRODUCTION
	2  CODE-BASED ASSESSMENT OF ULTIMATE FLEXURAL CAPACITY FOR RC CROSS SECTIONS
	3  PROPOSED METHOD
	4  M-N INTERACTION DOMAINS
	5  VALIDATION OF THE PROPOSED METHOD
	6  CONCLUSIONS
	Endnotes
	REFERENCES


